
Animation: SVG
and SMIL
Animation

8

11666-08 08.21.01 2:20 PM Page 208

Basic Animations
One of the most visually attractive aspects of SVG is its potential for animation.
Most parts of an SVG image can be animated—position onscreen, width, height,
color, opacity, stop colors in a gradient, attributes of SVG filters. The visual
effects are potentially legion. But before you get carried away or overwhelmed
by the potential, look at how SVG animation is done.

SVG images can be animated by two methods: the use of declarative SVG ele-
ments (mostly using elements borrowed from SMIL Animation) or the use of
ECMAScript (JavaScript) or another scripting language to manipulate the
Document Object Model (DOM) of an SVG image. The two methods can be com-
bined into one image.

This chapter focuses on declarative animation.

In practice, portraying in a book the visual appearances that SVG animation pro-
duces is difficult. Therefore, I strongly encourage you to experiment with the SVG
code provided and view these animations on your own computer. A number of
the animations presented in this chapter are accessible online on the Web site
http://www.svgspider.com/default.svg.

In this chapter:
• Basic Animations
• SVG As an Animation Grammar
• Basic Attributes of an Animation
• Applying SVG Animation to SVG Static

Elements
• More Complex Animations
• SVG, SMIL Animation, and SMIL 2.0
• The <animate> Element
• The <set> Element
• The <animateMotion> Element
• The <animateColor> Element
• The <animateTransform> Element
• Rotation Using <animateTransform>
• Simple Sample Animations

11666-08 08.21.01 2:20 PM Page 209

Designing SVG Web Graphics

SVG As an Animation
Grammar
Animation is a time-based alteration in the characteristics of an image.
During an SVG animation, the SVG rendering engine maintains two copies
of the value to be animated. One is the original value (which is maintained
in the DOM), and the other is the presentation value, the value that gives
rise to the onscreen appearance during an animation.

Before I discuss and show you working SVG animations, I want to discuss
the general way in which SVG animations are implemented and the vari-
ous forms of syntax you can apply.

Basic Attributes of an
Animation
To define an animation, you need to know what is to be animated, when
the animation will begin, what is the starting value of the attribute to be
animated, and what is the presentation value of that attribute at the end of
the animation.

The attribute to be animated is specified by the value of the
attributeName attribute. For example, if the fill attribute will be ani-
mated, you expect to see

attributeName="fill"

as an attribute on the animation element.

The timing of the beginning of an animation is determined by the value of
the begin attribute. For example, if the animation will begin six seconds
after the page loaded, you see this line in the code:

begin="6s"

210

11666-08 08.21.01 2:20 PM Page 210

Basic Attributes of an Animation

SVG animations can be chained. If the animation will begin five seconds
after the end of the First animation (identified by the id attribute of the
former animation having the value of First), you see

begin="First.end+5s"

and, therefore, achieving the timing you want.

For many of the animations you use, you should define the duration, using
the dur attribute. If the duration is not specified then, for most animations
the SVG rendering engine will have insufficient information to implement
the animation. To define the duration of an animation as being ten sec-
onds, you use the dur attribute, like this:

dur="10s"

Several general methods exist for altering the values of an attribute. One
uses both the from and to attributes so that for a color animation, you
might see

from="red" to="blue"

Or, if you are altering the size of a rectangle in steps of ten pixels, you
might use the from and by attributes, like this:

from="100px" by="10px"

which defines the change during the course of the animation. You can omit
the from attribute if it is the same as the original value of the attribute
defined in the attributeName and if it is contained in the Document
Object Model (DOM). However, you should include the from attribute rou-
tinely because it acts as a reminder of the need to consider the beginning
value of the attribute.

Finally, you can specify a variety of values to be displayed during the ani-
mation by using a values attribute. If you want to change the x attribute
of an element successively from 5 to 10 to 30 to 5, you write something
like this:

attributeName="x" values="5; 10; 30; 5"

I haven’t yet discussed what happens at the end of the duration defined by
the dur attribute. The default behavior is that the original value (the one
maintained in the DOM) for the target attribute is again displayed. If you

211

11666-08 08.21.01 2:20 PM Page 211

Designing SVG Web Graphics

want instead to preserve the final version of the presentation attribute,
you can do so like this:

fill="freeze"

which freezes the animation with the presentation value still on display.

Be careful not to confuse the fill attribute on a simple SVG graphical shape, like the
<rect> or <circle> elements, with the fill attribute of an animation element. The
fill attribute of a graphical shape defines the paint to be applied within the outline of the
shape. The fill attribute of an animation element defines whether the original value held
in the DOM or the presentation value created during the animation is displayed after the ani-
mation is complete.

The SMIL Animation facilities do not limit you to a one- off animation. They
provide syntax to define an indefinitely repeating animation or an anima-
tion that repeats a defined number of times. To produce an animation that
repeats exactly three times, you use

repeatCount="3"

Or, to produce an indefinitely repeating animation, you use

repeatCount="indefinite"

You see later in this chapter many examples of precisely how to use these
methods. My purpose now is simply to show you the range of syntax avail-
able to the SVG designer.

Applying SVG Animation to
SVG Static Elements
Before you go on to look in detail at the animation elements in SVG, look
at how an animation can be added to a simple SVG shape.

Typically, if you have a simple graphical shape with no content, you
express it as an empty element:

212

WARNING

11666-08 08.21.01 2:20 PM Page 212

Applying SVG Animation to SVG Static Elements

<rect x="100" y="100" width="10px" height="100px"

style="stroke:red; fill:rgb(0,0,0)"/>

However, when you want to add an animation to it, you need to nest the
SVG animation element between the start tag and end tag of the element
representing the graphical shape, like this:

<rect x="100" y="100" width="10px" height="100px"

style="stroke:red;

fill:rgb(0,0,0)">

<!-- The animation element goes in here. -->

</rect>

If you want to have an animation that changes both the width and height
attributes of a simple rectangle over a period of ten seconds, therefore, you
would have an SVG image whose source code looks like this:

Listing 8.1 (AnimRect.svg)

<?xml version='1.0'?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN"

"http://www.w3.org/TR/2001/PR-SVG-20010719/

DTD/svg10.dtd">

<svg width="300" height="250">

<rect x="100" y="100" width="10px" height="100px"

style="stroke:red; fill:rgb(0,0,0)">

<animate attributeName="width" from="10px"

to="100px"

begin="0s" dur="10s" repeatCount="1"

fill="freeze"/>

<animate attributeName="height" from="100px"

to="10px"

begin="0s" dur="10s" repeatCount="1"

fill="freeze"/>

</rect>

</svg>

By nesting the animation elements like this, you define the scope of the ani-
mation. Because, in this case, the <animate> element is nested immediate-
ly within the <rect> element, the attributes of the containing <rect> ele-
ment are animated.

213

11666-08 08.21.01 2:20 PM Page 213

Designing SVG Web Graphics

More Complex Animations
So far, the simple syntax you have looked at produces linear changes in an
attribute smoothly over the duration of the animation. SVG, however, pro-
vides alternative methods to add other nonlinear or noninterpolated anima-
tions.

First, compare linear and discrete modes on a color animation. The top rec-
tangle shown in Figure 08.01 changes slowly in color from white to yellow
over 16 seconds. The lower rectangle stays white until the 16 seconds
have passed and then changes step-wise from white to yellow. The discrete
calcMode is needed particularly in situations where no interpolated values
exist—for example, when you are changing the visibility attribute from
visible to hidden or vice versa. Interpolation values exist for the
opacity attribute, but the visibility attribute is a separate thing,
with the only possible values being hidden or visible.

214

Figure 08.01

The rectangles are
animated using lin-

ear and discrete cal-
culation modes,

respectively, with
resulting significant

differences in anima-
tion behavior.

Partway through the
animation, the top

rectangle is pale yel-
low and the bottom

rectangle is still
white (before the

step-wise change to
yellow).

Listing 8.2 (calcMode01.svg)

<?xml version="1.0" standalone="no"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN"

"http://www.w3.org/TR/2001/PR-SVG-20010719/

DTD/svg10.dtd">

11666-08 08.21.01 2:20 PM Page 214

More Complex Animations

<svg>

<rect x="50" y="50" width="100" height="50"

style="fill:#FFFFFF">

<animate attributeName="fill" calcMode="linear"

from="#FFFFFF" to="#FFFF00" begin="2s" dur="16s"/>

</rect>

<rect x="50" y="150" width="100" height="50"

style="fill:#FFFFFF">

<animate attributeName="fill" calcMode="discrete"

from="#FFFFFF" to="#FFFF00" begin="2s" dur="16s"/>

</rect>

</svg>

Having looked at the difference between linear and discrete calculation
modes, move on and look at paced calculation mode.

Figure 08.02 demonstrates the difference between linear calculation mode
and paced calculation mode. The example shows two lines being animated
by rotation using the <animateTransform> element. One animation uses
linear calculation mode, and the other uses paced calculation mode.

215

Figure 08.02

A moment, early in
the animation, when
the blue line is ani-
mating faster than
the red.

11666-08 08.21.01 2:20 PM Page 215

Designing SVG Web Graphics

Listing 8.3 (calcMode02.svg)

<?xml version="1.0" standalone="no"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN"

"http://www.w3.org/TR/2001/PR-SVG-20010719/

DTD/svg10.dtd">

<svg>

<line x1="0" y1="0" x2="300" y2="0" style="fill:red;

stroke:red;">

<animateTransform attributeName="transform"

calcMode="linear" type="rotate" values="0; 22; 45; 90;

0; 90; 22; 45; 0" dur="16s"/>

</line>

<line x1="0" y1="0" x2="300" y2="0" style="fill:blue;

stroke:blue;">

<animateTransform attributeName="transform"

calcMode="paced" type="rotate" values="0; 22; 45; 90;

0; 90; 22; 45; 0" dur="16s"/>

</line>

</svg>

Paced mode evens out the rotations over the 16 seconds of the rotation
shown in Figure 08.02. However, linear mode divides all the changes into
equal periods, so in the first period, it moves 22 degrees (and therefore
lags behind the blue paced calcMode line). In the next period, the red
linear calcMode line is again slower, traveling 23 degrees. In the third
period, it speeds up a little, traveling through 45 degrees. In the fourth
period, it speeds up more, traveling through 90 degrees, overtaking during
the fifth time interval the steadier-paced line (forgive the pun) the paced
calcMode blue line shown in the example.

If you take time to run the code, these differences are much easier to
appreciate than if you attempt to understand what is happening by simply
reading this text.

You can produce additional permutations by combining the use of the
values attribute, the keyTimes attribute, and the linear calcMode. In the
following code, pay particular attention to the keyTimes and values
attributes. At 0 seconds (the first key time), the width of the rectangle is 10
pixels. At the second key time (12 seconds), the width has increased to
only 20 pixels (the animation is slow). However, by the third key time (16
seconds), the width has increased to 110 pixels. If you run the animation,
you should see 12 seconds of slow animation followed by a distinct

216

11666-08 08.21.01 2:20 PM Page 216

More Complex Animations

increase in speed at 12 seconds. Figure 08.03 shows a moment in the
middle of this animation.

217

Figure 08.03

An animation of the
rectangle width con-
trolled by the
keyTimes attribute,
partly completed.

Listing 8.4 (calcMode03.svg)

<?xml version="1.0" standalone="no"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN"

"http://www.w3.org/TR/2001/PR-SVG-20010719/

DTD/svg10.dtd">

<svg>

<rect x="50" y="50" width="10" height="50" s

tyle="fill:none; stroke:red; stroke-width:1;">

<animate begin="0s" dur="16s" attributeName="width"

fill="freeze"

keyTimes="0s; 12s; 16s"

values = "10; 20; 110"/>

</rect>

</svg>

In addition, the splines calculation mode (which I don’t use in the
examples in this book) is used in conjunction with the keyTimes and
keyValues attributes. This mode is described fully in the SVG and SMIL
Animation specifications (see Appendix A for the URLs).

In SVG, you can alter the appearance of an image over time by changing
the values of one or more attributes of SVG elements over time. More
specifically, each SVG animation element alters the presentation value of
an attribute of an SVG element. The original value of the attribute is pre-
served, for possible future use, in the Document Object Model (DOM) of

11666-08 08.21.01 2:20 PM Page 217

Designing SVG Web Graphics

the SVG image or document. An SVG animation element is typically a
child of the parent element, the value of whose attribute is being manipu-
lated. For example, to change the color of a rectangle, you nest the
<animateColor> element (described in more detail later) within the
<rect> element, like this (and shown in Figure 08.04):

Listing 8.5 (ColorAnim00.svg)

<?xml version="1.0" standalone="no"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN"

"http://www.w3.org/TR/2001/PR-SVG-20010719/

DTD/svg10.dtd">

<svg>

<rect x="20" y="20" width="100" height="50"

style="fill:white; stroke:black;">

<animateColor begin="5s" attributeName="fill"

from="white" to="red" dur="8s" fill="freeze"/>

</rect>

</svg>

218

Figure 08.04

The fill of the rectan-
gle is partway from

white to red.

Don’t worry about the detail at the moment; just notice that the
<animateColor> element is a child of the <rect> element whose fill
color it changes. You can animate attributes on SVG elements other than
the parent of an animation element if the animation element possesses a
targetElement or href attribute. The href attribute belongs to the XML
Linking Language (Xlink) namespace. It is not an HTML or XHTML href
attribute. In this chapter, you focus on the default behavior where an

11666-08 08.21.01 2:21 PM Page 218

More Complex Animations

animation element manipulates with time the presentation value of an attrib-
ute on its parent element.

SVG allows you to animate many attributes of SVG elements. You can
change the color of a graphic, change its position, change its transparen-
cy, or make part of an image visible or hidden, for example, all by using
the declarative animation syntax. You can produce particularly attractive or
subtle effects when SVG filters are animated over time.

SVG provides five animation elements:

<animate>

<set>

<animateColor>

<animateMotion>

<animateTransform>

The first four elements are derived directly from SMIL Animation. The fifth
animation element, <animateTransform>, is an SVG-specific animation
element.

The <animate> element allows changes to be made to scalar SVG (XML)
attributes or to CSS properties over time. The <set> element is an alterna-
tive to the <animate> element in some situations, conveniently allowing
nonnumeric values to be set. The <animateColor> element allows color to
be changed over time. The <animateMotion> element allows part of an
SVG image to be moved along some path over time.

The <animateTransform> element allows the animation of one or more
of the SVG transformation attributes; for example, scale. SVG provides, in
addition to the <animateTransform> element, four other extensions to
the animation functionality in SMIL Animation. A path attribute permits the
animation of SVG path data. You can use an <mpath> element as a child
of an <animateMotion> element to provide access to path data. A
keyPoints attribute has been added to the <animateMotion> element,
compared to the SMIL Animation original, to provide additional control of
the speed of motion animations. A rotate attribute has been added to the
<animateMotion> element and determines whether an object being ani-
mated along a path changes its orientation to correspond to the direction
of the path at a particular point. (Think of how a car turns as a road
curves.)

219

11666-08 08.21.01 2:21 PM Page 219

Designing SVG Web Graphics

SVG, SMIL Animation, and
SMIL 2.0
As I indicate in the preceding section, SVG derives four of its five declara-
tive animation elements from SMIL Animation. SMIL, by the way, is the
Synchronized Multimedia Integration Language. A W3C Recommendation
for SMIL 1.0 was issued on June 15, 1998, and is at
http://www.w3.org/TR/REC-smil. The SMIL Animation specification is, at
the time this book was written, still in the W3C Proposed Recommendation
stage. The latest version is at http://www.w3.org/TR/smil-animation. Also
under development is the SMIL 2.0 specification, also a Proposed
Recommendation. The latest version is at http://www.w3.org/TR/smil20.

SMIL Animation is the most important of these three specifications as far as
understanding SVG animations in isolation is concerned. However, SMIL
1.0 and SMIL 2.0 allow the integration of multimedia components within
which static or animated SVG graphics can play a useful part. A discussion
of those exciting possibilities of the multimedia use of SVG is beyond the
scope of this book.

SMIL Animation provides a way of expressing animations using XML-compli-
ant elements that describe an animation along a timeline. In addition, SMIL
Animation—and, hence, SVG—allows individual animations to be com-
bined in visually attractive ways. Many animations described in this chapter
are fairly simple because you must understand how each animation compo-
nent works. After you understand fully how each one works, you should be
in a good position to combine animation elements to good visual effect.

To produce an SVG animation, you declare a target attribute on an SVG
element. For example, if you want to change the width of a rectangle, you
use the width attribute as the target attribute, something like this:

Listing 8.6 (ChangeWidth.svg)

<?xml version="1.0" standalone="no"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN"

"http://www.w3.org/TR/2001/PR-SVG-20010719/

DTD/svg10.dtd">

220

11666-08 08.21.01 2:21 PM Page 220

The <animate> Element

<svg width="400" height="300">

<rect x="50" y="100" width="10" height="10"

style="fill:red; stroke:black; stroke-width:3;">

<animate attributeName="width" from="10" to="100"

begin="0s" dur="20s" />

</rect>

</svg>

When the rectangle is first displayed, it has a width of ten user units. The
attributeName attribute of the <animate> element indicates that the
target attribute is the width attribute of the <rect> element. The anima-
tion begins at 0s, which means 0 seconds (immediately) after the image is
displayed. The duration of the animation, expressed by the dur attribute,
is 20 seconds. During that time, the value of the width attribute changes
from 10 to 100. Visually, what was initially a small square increases pro-
gressively in width over a period of 20 seconds:

<animate attributeName="width" from="10" to="100"

begin="0s" dur="20s" />

You have not specified that the rectangle retains its animated shape; there-
fore, it snaps back to the appearance of a small square after the animation
is complete. If I had wanted the rectangle to retain the shape it had at the
end of the animation, I would have added this line:

fill="freeze"

The original value of the target attribute is always available to be
displayed again. During the animation, a copy of the original target
attribute is created, and its changing values contribute to the display you
see. However, the original value of the attribute remains unchanged in
the SVG document’s Document Object Model (DOM).

The <animate> Element
I look at the <animate> element as a general-purpose SVG animation
element because it can do some of everything. For some animations,
the more specialized animation elements (<animateColor>,
<animateTransform>, <animateMotion>, and <set>) provide
additional control or convenience.

221

11666-08 08.21.01 2:21 PM Page 221

Designing SVG Web Graphics

Animating motion

One straightforward type of animation that is possible using the
<animate> element is linear animation, which can be done horizontally,
vertically, or (by combining two animations) diagonally.

Animate a circle horizontally first:

Listing 8.7 (LinCircleAnim01.svg)

<?xml version="1.0" standalone="no"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN"

"http://www.w3.org/TR/2001/PR-SVG-20010719/

DTD/svg10.dtd">

<svg width="500" height="300">

<circle cx="50" cy="50" r="10" style="fill:#990066">

<animate attributeName="cx" from="50" to="450"

begin="2s" dur="10s"

repeatCount="indefinite"/>

</circle>

</svg>

Similarly, you can animate the circle vertically by animating the cy attribute
rather than the cx attribute:

Listing 8.8 (LinCircleAnim02.svg)

<?xml version="1.0" standalone="no"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN"

"http://www.w3.org/TR/2001/PR-SVG-20010719/

DTD/svg10.dtd">

<svg width="500" height="300">

<circle cx="50" cy="50" r="10" style="fill:#990066">

<animate attributeName="cy" from="50" to="250"

begin="2s" dur="10s"

repeatCount="indefinite"/>

</circle>

</svg>

Or, by animating simultaneously the cx and cy attributes, you can move
the circle diagonally across the screen:

222

11666-08 08.21.01 2:21 PM Page 222

The <animate> Element

Listing 8.9 (LinCircleAnim03.svg)

<?xml version="1.0" standalone="no"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN"

"http://www.w3.org/TR/2001/PR-SVG-20010719/

DTD/svg10.dtd">

<svg width="500" height="300">

<circle cx="50" cy="50" r="10" style="fill:#990066">

<animate attributeName="cx" from="50" to="450"

begin="2s" dur="10s"

repeatCount="indefinite"/>

<animate attributeName="cy" from="50" to="250"

begin="2s" dur="10s"

repeatCount="indefinite"/>

</circle>

</svg>

Animating size

You can use the <animate> element to animate the size of an SVG element.
The example in Listing 8.10 shows indefinitely repeating animations of a row
of squares that change size in response to an <animate> element.

Listing 8.10 (GrowingSquares01.svg)

<?xml version="1.0" standalone="no"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN"

"http://www.w3.org/TR/2001/PR-SVG-20010719/

DTD/svg10.dtd">

<svg width="150" height="100">

<rect x="10" y="20" width="0" height="0"

style="fill:none; stroke:red; stroke-width:1">

<animate begin="0s" attributeName="width" values="0;

10; 0; 10; 0;" dur="5s" repeatCount="indefinite"/>

<animate begin="0s" attributeName="height" values="0;

10; 0; 10; 0;" dur="5s" repeatCount="indefinite"/>

</rect>

<rect x="25" y="20" width="0" height="0"

style="fill:none; stroke:yellow; stroke-width:1">

<animate begin="1s" attributeName="width" values="0;

10; 0; 10; 0;" dur="5s" repeatCount="indefinite"/>

<animate begin="1s" attributeName="height" values="0;

10; 0; 10; 0;" dur="5s" repeatCount="indefinite"/>

</rect>

<rect x="40" y="20" width="0" height="0"

223

11666-08 08.21.01 2:21 PM Page 223

Designing SVG Web Graphics

style="fill:none; stroke:blue; stroke-width:1">

<animate begin="2s" attributeName="width" values="0;

10; 0; 10; 0;" dur="5s" repeatCount="indefinite"/>

<animate begin="2s" attributeName="height" values="0;

10; 0; 10; 0;" dur="5s" repeatCount="indefinite"/>

</rect>

<rect x="55" y="20" width="0" height="0"

style="fill:none; stroke:#FF6600; stroke-width:1">

<animate begin="3s" attributeName="width" values="0;

10; 0; 10; 0;" dur="5s" repeatCount="indefinite"/>

<animate begin="3s" attributeName="height" values="0;

10; 0; 10; 0;" dur="5s" repeatCount="indefinite"/>

</rect>

<rect x="70" y="20" width="0" height="0"

style="fill:none; stroke:#00FF00; stroke-width:1">

<animate begin="4s" attributeName="width" values="0;

10; 0; 10; 0;" dur="5s" repeatCount="indefinite"/>

<animate begin="4s" attributeName="height" values="0;

10; 0; 10; 0;" dur="5s" repeatCount="indefinite"/>

</rect>

<rect x="85" y="20" width="0" height="0"

style="fill:none; stroke:#FF00FF; stroke-width:1">

<animate begin="5s" attributeName="width" values="0;

10; 0; 10; 0;" dur="5s" repeatCount="indefinite"/>

<animate begin="5s" attributeName="height" values="0;

10; 0; 10; 0;" dur="5s" repeatCount="indefinite"/>

</rect>

</svg>

With animations like this, I can never make up my mind whether they are a
nice background piece of motion or an irritating irrelevance. Overall, I like
this one.

Figure 08.05 shows one part of the animation.

The <set> Element
The <set> element provides a straightforward way of setting the value of
an attribute or property to a particular value for a specified period. As with
the other SMIL Animation and SVG animation elements, the <set> element
sets the presentation attribute value, leaving the original value of the
target attribute unchanged in the DOM.

224

11666-08 08.21.01 2:21 PM Page 224

The <set> Element

You can use the <set> element to set the value of an attribute for which
interpolated values make no sense; for example, the visibility attribute
can have only the values hidden or visible. The additive or accumula-
tive attributes are not permitted on a <set> element. Also, the
repeatCount attribute does not cause the animation to be repeated, but
simply extends the duration for which the animated presentation value is
displayed.

For example, you can use the <set> element to control simple rollover
effects, like this:

Listing 8.11 (Set01.svg)

<?xml version="1.0" standalone="no"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN"

"http://www.w3.org/TR/2001/PR-SVG-20010719/

DTD/svg10.dtd">

<svg>

<rect x="50" y="50" rx="5" ry="5" width="150"

height="50" style="fill:#000099; stroke:#000099;">

<set begin="mouseover" end="mouseout"

attributeName="fill" from="#000099" to="#CCCCFF"/>

</rect>

</svg>

When the mouse is moved over the rectangle, the fill changes to a sort of
pale blue and remains like that until the mouse is moved away, ending the
animation. This provides a more succinct syntax as an alternative to paired

225

Figure 08.05

The animation of the
size of the multiple
squares at one point
during the repeating
animation.

11666-08 08.21.01 2:21 PM Page 225

Designing SVG Web Graphics

<animate> elements to achieve mouseover and mouseout effects. Figure
08.06 shows the rectangle before it is moused, and Figure 08.07 shows
the appearance of the rectangle while it is being moused. Note that no
pointing hand is there because the rectangle is not enclosed within an <a>
element.

226

Figure 08.06

The rectangle not
moused.

Figure 08.07

The rectangle show-
ing the mouseover
change in the fill.

Animating visibility

SVG allows you, using the <set> element, to make an element or group of
elements visible or hidden.

11666-08 08.21.01 2:21 PM Page 226

The <set> Element

Suppose that you want to keep some text hidden for two seconds and
make it visible for six seconds. Because the text is to be hidden initially,
you set the visibility attribute in the <text> element to a value of
hidden. The animation is controlled by a <set> element, which animates
the visibility attribute from hidden to visible. The begin attribute
indicates that the animation begins two seconds after the image is loaded,
and the dur attribute indicates that the text is visible for six seconds. After
that period, the original value of the visibility property is restored (the text
is again hidden).

Listing 8.12 (AnimVisibility.svg)

<?xml version="1.0" standalone="no"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN"

"http://www.w3.org/TR/2001/PR-SVG-20010719/

DTD/svg10.dtd">

<svg>

<text id="TextElement" x="40" y="40"

style="font-family:Verdana, sans-serif; font-size:30;

visibility:hidden; fill:#990066;stroke:#990066" >

And now you see me!

<set attributeName="visibility" attributeType="CSS"

to="visible"

begin="2s" dur="6s"/>

</text>

</svg>

You can also make the text visible and keep it visible. To do that, you
change the <set> element as follows:

<set attributeName="visibility" attributeType="CSS"

to="visible"

begin="2s" fill="freeze"/>

Listing 8.12 is a time-based visibility animation. You can also create event-
based visibility animations, such as in Listing 8.13, where mousing the
rectangle causes the circle to become visible.

Listing 8.13 (Rollover01.svg)

<?xml version='1.0'?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN"

227

11666-08 08.21.01 2:21 PM Page 227

Designing SVG Web Graphics

"http://www.w3.org/TR/2001/PR-SVG-20010719/

DTD/svg10.dtd">

<svg width="300" height="200">

<g style="display:none">

<animate attributeName="display" from="none" to="block"

begin="Button.mouseover" dur="0.1s" fill="freeze" />

<animate attributeName="display" from="block" to="none"

begin="Button.mouseout"

dur="0.1s" fill="freeze" />

<circle cx="20" cy="25" r="10" style="fill:red;"/>

</g>

<rect id="Button" x="40" y="10" width="100" height="30"

rx="5" ry="5"

style="fill:red;">

<animateColor begin="mouseover" attributeName="fill"

from="red" to="blue"

dur="0.1s" fill="freeze" />

<animateColor begin="mouseout" attributeName="fill"

from="blue" to="red"

dur="0.1s" fill="freeze" />

</rect>

</svg>

In Listing 8.13, I have created a group <g> element to control visibility.
When visibility is controlled within a <g> element, it depends on animating
the display property rather than the visibility property used in
Listing 8.12.

<g style="display:none">

<animate attributeName="display" from="none" to="block"

begin="Button.mouseover" dur="0.1s" fill="freeze" />

<animate attributeName="display" from="block" to="none"

begin="Button.mouseout"

dur="0.1s" fill="freeze" />

<circle cx="20" cy="25" r="10" style="fill:red;"/>

</g>

The display attribute begins with a value of none. The first <animate>
element changes the value of the display attribute from none to block,
which makes the circle (which is part of the content of the <g> element)
visible on mouseover. On mouseout, the second <animate> element
causes the value of the display attribute to return to none, so the circle
disappears from the screen.

228

11666-08 08.21.01 2:21 PM Page 228

The <set> Element

A rollover of similar visual appearance could have been achieved by using
the <circle> element without a containing <g> element and creating and
animating a visibility attribute on the <circle> element from hidden
to visible as shown in Figure 08.08.

229

Figure 08.08

The circle becomes
visible when the rec-
tangle is moused
and disappears
when the mouse is
removed from the
rectangle.

Animating URIs

When an SVG fill is referenced, you make use of a URI that refers to the
id attribute on the <linearGradient> or other element that defines the
fill. That URI, like so many other SVG attributes, can be animated. Listing
8.14 contains a simple animation that puts this concept into practice and
changes for a defined period the linear gradient used to fill one of the four
circles (see Figure 08.09).

Listing 8.14 (CircleGradient02.svg)

<?xml version="1.0" standalone="no"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN"

"http://www.w3.org/TR/2001/PR-SVG-20010719/

DTD/svg10.dtd">

<svg width="400" height="300">

<defs>

<linearGradient id="MyBlueGradient"

gradientUnits="userSpaceOnUse" x1="90"

y1="50" x2="150" y2="150" >

<stop offset="10%" style="stop-color:#FF0066"/>

<stop offset="75%" style="stop-color:#EEEEFF"/>

</linearGradient>

11666-08 08.21.01 2:21 PM Page 229

Designing SVG Web Graphics

<linearGradient id="MyGreenGradient"

gradientUnits="userSpaceOnUse" x1="60"

y1="50" x2="120" y2="150" >

<stop offset="10%" style="stop-color:#FF0066"/>

<stop offset="75%" style="stop-color:#CCFFCC"/>

</linearGradient>

</defs>

<ellipse cx="100" cy="50" rx="50" ry="50"

style="fill:url(#MyBlueGradient)">

</ellipse>

<ellipse cx="100" cy="150" rx="50" ry="50"

style="fill:url(#MyBlueGradient)">

</ellipse>

<ellipse cx="200" cy="100" rx="50" ry="50"

style="fill:url(#MyBlueGradient)">

</ellipse>

<ellipse cx="300" cy="150" rx="50" ry="50"

style="fill:url(#MyBlueGradient)">

<set attributeName="fill" from="url(#MyBlueGradient)"

to="url(#MyGreenGradient)"

begin="3s" dur="5s" repeatCount="1"/>

</ellipse>

</svg>

230

Figure 08.09

The URI referenced
by the fill of the

lower-right circle has
been altered by the
<set> element.

11666-08 08.21.01 2:21 PM Page 230

The <set> Element

As you can see in the following code, the from attribute of the <set>
element refers to the <LinearGradient> element with an id attribute
of MyBlueGradient and then alters to MyGreenGradient the gradient
being referenced. At the end of the animation, because no fill attribute
is on the <set> element, the gradient used returns to the one described by
the fill property of the <ellipse> element:

<ellipse cx="300" cy="150" rx="50" ry="50"

style="fill:url(#MyBlueGradient)">

<set attributeName="fill" from="url(#MyBlueGradient)"

to="url(#MyGreenGradient)"

begin="3s" dur="5s" repeatCount="1"/>

</ellipse>

Chaining animations

So far, you have created animations that are either solitary or timed inde-
pendently of each other. SMIL Animation—and, hence, SVG—also allows
you to chain animations so that, if you have two animations, the second
animation begins in a defined relationship to some aspect of the timing of
the first animation. Look now at some examples of how animations can be
chained.

In fact, all SVG animations are chained! Pause, and as you look at the
following code, think for a moment what I mean:

Listing 8.15 (Chaining01.svg)

<?xml version="1.0" standalone="no"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN"

"http://www.w3.org/TR/2001/PR-SVG-20010719/

DTD/svg10.dtd">

<svg width="300" height="100">

<rect x="10" y="45" width="10" height="10"

style="fill:pink;">

<animate begin="2s" dur="10s"

attributeName="width" from="10" to="250"/>

</rect>

</svg>

231

11666-08 08.21.01 2:21 PM Page 231

Designing SVG Web Graphics

The begin attribute has a value representing two seconds, but what does
that two seconds refer to? It is timed relative to the end of document load-
ing, so you have, even in that basic example, the chaining of events: The
SVG document finishes loading, and the animation of the width attribute
begins two seconds later. What you need to do is to understand the more
general syntax to express the chaining of animations. Take a look at the
following simple example, and you can see how this process works. I
have added id attributes to the original <rect> element, the <animate>
element, and the new <rect> so that you can be clear about exactly
which part I am talking about.

Listing 8.16 (Chaining02.svg)

<?xml version="1.0" standalone="no"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN"

"http://www.w3.org/TR/2001/PR-SVG-20010719/

DTD/svg10.dtd">

<svg width="300" height="100">

<rect id="MaroonRect" x="10" y="15" width="10"

height="10" style="fill:#990066;">

<animate begin="PinkAnim.begin+2s" dur="10s"

attributeName="width" from="10" to="250"/>

</rect>

<rect id="PinkRect" x="10" y="45" width="10"

height="10" style="fill:pink;">

<animate id="PinkAnim" begin="2s" dur="10s"

attributeName="width" from="10" to="250"/>

</rect>

</svg>

The animation proceeds as follows: Two seconds after document loading is
complete, the pink rectangle is animated because of this code:

<animate id="PinkAnim" begin="2s" dur="10s"

attributeName="width" from="10" to="250"/>

Notice that the animation has the id of PinkAnim. In the following line,
another animation is linked to the beginning of that animation:

<animate begin="PinkAnim.begin+2s" dur="10s"

attributeName="width" from="10" to="250"/>

232

11666-08 08.21.01 2:21 PM Page 232

The <set> Element

by the syntax

begin="PinkAnim.begin+2s"

meaning that the animation starts relative to the element identified by the
id attribute of value PinkAnim—more specifically, two seconds after that
animation begins. Figure 08.10 shows the animation part completed.

233

Figure 08.10

Because the anima-
tion of the top rec-
tangle starts two
seconds after the
lower one begins, the
top rectangle is
smaller during much
of the animation.

Similarly, you can add another animation that is started relative to the end
of the PinkAnim animation, by using this code:

<rect id="YellowRect" x="10" y="75" width="10"

height="10" style="fill:#FFFF00;">

<animate begin="PinkAnim.end+2s" dur="10s"

attributeName="width" from="10" to="250"/>

</rect>

If you run the following listing, you see that the pink rectangle is animated
two seconds after document loading is complete. Two seconds later, the
maroon rectangle is animated; two seconds after that, the animation of
the pink rectangle is completed, and two seconds after that the animation
of the yellow rectangle begins.

Listing 8.17 (Chaining03.svg)

<?xml version="1.0" standalone="no"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN"

"http://www.w3.org/TR/2001/PR-SVG-20010719/

DTD/svg10.dtd">

11666-08 08.21.01 2:21 PM Page 233

Designing SVG Web Graphics

<svg width="300" height="100">

<rect id="MaroonRect" x="10" y="15" width="10"

height="10" style="fill:#990066;">

<animate begin="PinkAnim.begin+2s" dur="10s"

attributeName="width" from="10" to="250"/>

</rect>

<rect id="PinkRect" x="10" y="45" width="10"

height="10" style="fill:pink;">

<animate id="PinkAnim" begin="2s" dur="10s"

attributeName="width" from="10" to="250"/>

</rect>

<rect id="YellowRect" x="10" y="75" width="10"

height="10" style="fill:#FFFF00;">

<animate begin="PinkAnim.end+2s" dur="10s"

attributeName="width" from="10" to="250"/>

</rect>

</svg>

In case you are interested, the SVG jargon for PinkAnim.end is syncbase,
and the 2s is the offset from it.

To modify the code so that the three animations are linked in sequence, you
use as the syncbase for the second animation the end of the first one, and
use as the syncbase for the third animation the end of the second. This
process is implemented in the following code. I don’t want you to get
obsessed with the visual impact of changing the width of rectangles; rather,
I want you to consider the power that is available if you chain animations
in this way.

Listing 8.18 (Chaining04.svg)

<?xml version="1.0" standalone="no"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN"

"http://www.w3.org/TR/2001/PR-SVG-20010719/

DTD/svg10.dtd">

<svg width="300" height="100">

<rect id="MaroonRect" x="10" y="15" width="10"

height="10"

style="fill:#990066;">

<animate id="MaroonAnim" begin="PinkAnim.end"

dur="5s" attributeName="width" from="10"

to="250"/>

</rect>

<rect id="PinkRect" x="10" y="45" width="10"

height="10" style="fill:pink;">

234

11666-08 08.21.01 2:21 PM Page 234

The <set> Element

<animate id="PinkAnim" begin="2s" dur="5s"

attributeName="width" from="10"

to="250"/>

</rect>

<rect id="YellowRect" x="10" y="75" width="10"

height="10"

style="fill:#FFFF00;">

<animate id="YellowAnim" begin="MaroonAnim.end"

dur="5s" attributeName="width" from="10"

to="250"/>

</rect>

</svg>

Look at how you can develop this idea further. Notice that the yellow rec-
tangle has an id attribute on its nested <animate> element. To link a
fourth animation to the chain is a straightforward process: Just reference
YellowAnim.end as the syncbase. If that fourth animation has an id
attribute, you can easily add a fifth.

Can you also see how you can use this concept to create and exploit
animation visual components?

As far as the “fourth” animation is concerned, the only thing it sees is the
end of the YellowAnim animation. What comes before that is immaterial.
The three linked animations are essentially an animated visual component,
as far as the fourth animation is concerned. At its simplest level, you can
link a further animation, which can be simple or complex, into the end of
the YellowAnim animation. But nothing stops you from linking it instead to
the MaroonAnim animation, or to the PinkAnim animation. So your simple
animation could have three different animation paths as spinoffs from this
simple start.

Determining multiple times to begin
an animation

So far, you have looked at just using one value for the begin attribute of
an <animate> element. However, SVG allows you to use a list of them.
Make use of that facility by modifying the code for the pink rectangle, like
this:

235

11666-08 08.21.01 2:21 PM Page 235

Designing SVG Web Graphics

<rect id="PinkRect" x="10" y="45" width="10"

height="10" style="fill:pink;">

<animate id="PinkAnim" begin="2s; YellowAnim.end"

dur="5s" attributeName="width" from="10"

to="250"/>

</rect>

Notice that the begin attribute of the <animate> element has a value of
2s; YellowAnim.end. It contains a list of values. The first value indicates
that the pink rectangle is animated two seconds after the document finishes
loading. The second value indicates that the pink rectangle is animated
when the yellow rectangle has finished its animation. You have therefore
created a looping animation, by chaining the first animation to the end of
the third.

The ordering of the individual values within the values attribute is immaterial. You can
insert additional values that should occur early after other values without causing any error,
always assuming that you remember to separate individual values by semicolons inserted in
the correct place.

To put these two ideas together, you can create a sequence of three anima-
tions. At the end of any of the individual animations, you can spin off other
animations. In addition, you can loop back to the beginning of the first ani-
mation, creating a looping animation. Whenever the animations are as
simple as those with the rectangles, this process isn’t spectacular; if you
apply your creativity, however, to create more sophisticated animation,
perhaps involving color changes or animated gradients, for example, you
can begin to glimpse the potential creative power available to you.

You can add another dimension to this process. What if the start of the
animations are triggered by user events? What if by mousing part of an
SVG image or clicking on a particular part, you can create a cascade of
chained animations—perhaps some of which loop too? Can you see the
huge potential here? Don’t worry if your brain is aching at the practical
difficulties in visualizing, planning, and coding all that material—just allow
yourself to take a look at the potential power of it.

In the final example in this section I have cheated a bit. Interaction isn’t
covered until Chapter 11, “Creating Interactive SVG Graphics,” so I don’t
explain the code for the interactive animations here (although you should

236

NOTE

11666-08 08.21.01 2:21 PM Page 236

The <set> Element

be able to work it out if you have been following this discussion). I simply
describe what it does. I have removed the starting point at two seconds
after the document loads. To start the chain reaction (forgive the pun), you
need to either mouse over the maroon or yellow squares or click on the
pink one (as in Figure 08.11. Before you do anything, the screen looks
something like this:

237

Figure 08.11

The appearance of
Listing 8.19 before
any of the small
squares is activated
by mousing or
clicking.

Start by mousing or clicking a single square and following the chain of
animations from one rectangle to another to convince yourself that, after
they’re started, they work as they previously did.

After you have done that, explore a little of how things have become more
complex. If you mouse two squares with a little time between, you start two
animations. In fact, you will have started four animations, including the two
that hide the text <--Mouse here. The total animation you see depends
on the relative times of when you mouse or click the relevant squares (see
Figure 08.12).

Listing 8.19 (Chaining06.svg)

<?xml version="1.0" standalone="no"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN"

"http://www.w3.org/TR/2001/PR-SVG-20010719/

DTD/svg10.dtd">

<svg width="300" height="100">

<rect id="MaroonRect" x="10" y="15" width="10"

height="10"

style="fill:#990066;">

11666-08 08.21.01 2:21 PM Page 237

Designing SVG Web Graphics

<animate id="MaroonAnim" begin="PinkAnim.end;

mouseover" dur="5s" attributeName="width" from="10"

to="250"/>

</rect>

<text x="30" y="25" style="fill:red; stroke:red;

font-size:14">

<animate begin="MaroonAnim.begin" dur="0.1s"

attributeName="visibility" from="visible"

to="hidden" fill="freeze"/>

<animate begin="MaroonAnim.end" dur="0.1s"

attributeName="visibility" from="hidden"

to="visible" fill="freeze"/>

<--Mouse here

</text>

<rect id="PinkRect" x="10" y="45" width="10"

height="10" style="fill:pink;">

<animate id="PinkAnim" begin="YellowAnim.end;

click" dur="5s" attributeName="width" from="10"

to="250"/>

</rect>

<text x="30" y="55" style="fill:red; stroke:red;

font-size:14">

<animate begin="PinkAnim.begin" dur="0.1s"

attributeName="visibility" from="visible" to="hidden"

fill="freeze"/>

<animate begin="PinkAnim.end" dur="0.1s"

attributeName="visibility" from="hidden"

to="visible" fill="freeze"/>

<--Click here

</text>

<rect id="YellowRect" x="10" y="75" width="10"

height="10"

style="fill:#FFFF00;">

<animate id="YellowAnim" begin="MaroonAnim.end;

mouseover" dur="5s" attributeName="width" from="10"

to="250"/>

</rect>

<text x="30" y="85" style="fill:red; stroke:red;

font-size:14">

<animate begin="YellowAnim.begin" dur="0.1s"

attributeName="visibility" from="visible" to="hidden"

fill="freeze"/>

<animate begin="YellowAnim.end" dur="0.1s"

attributeName="visibility" from="hidden" to="visible"

fill="freeze"/>

<--Mouse here

</text>

</svg>

238

11666-08 08.21.01 2:21 PM Page 238

The <animateMotion> Element

The more sensible or practical use is probably to allow, for example, multi-
ple entry points into an animation. That could be a slide show, and, by
mousing some visual cue for where you want to start, you can avoid
repeating material you have already seen.

Or apply this in an SVG game? I leave creating that to you. You need to
return from these flights of enjoyable creative fancy to consider some of the
other SVG animation elements.

The <animateMotion> Element
The purpose of the <animateMotion> element is to create an animation
along a path. The following code creates an animation where a circle
traces the shape of a rectangle four times.

Listing 8.20 (AnimPath00.svg)

<?xml version="1.0" standalone="no"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN"

"http://www.w3.org/TR/2001/PR-SVG-20010719/

DTD/svg10.dtd">

<svg>

<circle cx="0" cy="0" r="5" style="fill:red;

stroke:red;">

239

Figure 08.12

The animation shortly
after the maroon
(top) rectangle has
been moused.

11666-08 08.21.01 2:21 PM Page 239

Designing SVG Web Graphics

<animateMotion path="M50,50 150,50 150,100 50,100 z"

dur="5s"

repeatCount="4" />

</circle>

</svg>

Animation on a path

One of the most compelling types of animation is animation on a path. The
path along which the animation can take place is any path that can be
expressed in SVG, which leaves enormous scope for creativity.

Let’s continue with a further example so that you can understand how to
construct more visually exciting animations at a later stage. The animation
whose source code is shown next is a small, red circle traveling along a
semicircular path over a period of six seconds (see Figure 08.13).

Listing 8.21 (AnimPath01.svg)

<?xml version="1.0" standalone="no"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN"

"http://www.w3.org/TR/2001/PR-SVG-20010719/

DTD/svg10.dtd">

<svg width="500" height="300">

<path d="M100,250 C 100,50 400,50 400,250"

style="fill:none; stroke:#00FF00; stroke-width:5" />

<circle x="100" y="50" r="10" style="fill:red;">

<animateMotion dur="6s" repeatCount="indefinite"

path="M100,250 C 100,50 400,50 400,250" />

</circle>

</svg>

As you can see if you have loaded the code, the animation starts immedi-
ately after the SVG image is loaded. If I had wanted to delay the start of
the animation, I could have added a begin attribute to the
<animateMotion> element. Similarly, if you had wanted the animation to
occur only once, you could have added to the <animateMotion> element
a fill attribute with a value of freeze.

240

11666-08 08.21.01 2:21 PM Page 240

The <animateMotion> Element

You can animate the circle, or any other SVG element or element grouping,
along more complex paths. In the following example, the circle travels
along a sinuous curve across the screen. The <path> element creates a visi-
ble red path that is drawn onscreen. The path attribute of the
<animateMotion> element has the same values; therefore, the circle
appears to travel along the curving red line (as shown in Figure 08.14).

Listing 8.22 (AnimPath02.svg)

<?xml version="1.0" standalone="no"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN"

"http://www.w3.org/TR/2001/PR-SVG-20010719/

DTD/svg10.dtd">

<svg width="1000" height="300">

<path d="M100,250

C200,100 300,0 400,80

C500,150 600,300 700,200

C800,100 900,0 1000,100"

style="stroke:red;fill:none;stroke-width:2;"/>

<circle x="100" y="250" r="10" style="fill:red;">

<animateMotion dur="10s" path="M100,250

C200,100 300,0 400,80

241

Figure 08.13

Animation of a circle
along a path.

11666-08 08.21.01 2:21 PM Page 241

Designing SVG Web Graphics

C500,150 600,300 700,200

C800,100 900,0 1000,100" repeatCount="indefinite"/>

</circle>

</svg>

242

Figure 08.14

A circle partway
through an animation
along a sinuous
path.

If you run the code and look carefully at the animation, you see that the cir-
cle is nicely centered on the curve, as you can see in Figure 08.14.
However, if you alter the code so that a rectangle follows the same path:

Listing 8.23 (AnimPath03.svg)

<?xml version="1.0" standalone="no"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN"

"http://www.w3.org/TR/2001/PR-SVG-20010719/

DTD/svg10.dtd">

<svg width="1000" height="300">

<path d="M100,250

C200,100 300,0 400,80

C500,150 600,300 700,200

C800,100 900,0 1000,100"

style="stroke:red;fill:none;stroke-width:2;"/>

<rect x="0" y="0" width="20" height="20"

style="fill:red;">

<animateMotion dur="10s" path="M100,250

C200,100 300,0 400,80

C500,150 600,300 700,200

C800,100 900,0 1000,100" repeatCount="indefinite"/>

</rect>

</svg>

you find that it looks okay at some parts of the animation and that, at
other points, the rectangle hangs off the curve rather untidily by its upper-

11666-08 08.21.01 2:21 PM Page 242

The <animateMotion> Element

left corner. The circle is placed symmetrically on the curve because the cir-
cle’s center is the reference point for the cx and cy attributes. For the rec-
tangle, on the other hand, the upper-left corner is referenced by the x and
y attributes.

However, that problem is easily fixed. Simply change the x and y attributes
to a negative number that is half the width and height, respectively:

<rect x="-10" y="-10" width="20" height="20"

style="fill:red;">

<animateMotion dur="10s" path="M100,250

C200,100 300,0 400,80

C500,150 600,300 700,200

C800,100 900,0 1000,100" repeatCount="indefinite"/>

</rect>

and the rectangle is then symmetrically displayed. The amended code is
included in the listing as AnimPath04.svg.

When you want to create an animation along a path, however, you proba-
bly don’t use something as symmetrical as a circle or rectangle. Also, you
might want the SVG object being animated to “point” along the direction
of a path. Suppose that you have plans to create a simulation of a fair-
ground ride. The rectangle stays upright all the time, which doesn’t look
realistic with a vehicle to follow the track. You need to add a rotate
attribute with the value of auto; then, you find that the rectangle follows
the curve in a much more lifelike manner.

Listing 8.24 (AnimPath05.svg)

<?xml version="1.0" standalone="no"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN"

"http://www.w3.org/TR/2001/PR-SVG-20010719/

DTD/svg10.dtd">

<svg width="1000" height="300">

<path d="M100,250

C200,100 300,0 400,80

C500,150 600,300 700,200

C800,100 900,0 1000,100"

style="stroke:red;fill:none;stroke-width:2;"/>

<rect x="-20" y="-10" width="40" height="20"

style="fill:red;">

<animateMotion dur="10s" path="M100,250

243

11666-08 08.21.01 2:21 PM Page 243

Designing SVG Web Graphics

C200,100 300,0 400,80

C500,150 600,300 700,200

C800,100 900,0 1000,100" repeatCount="indefinite"

rotate="auto"/>

</rect>

</svg>

You can use a similar technique when you are animating vehicles or a
spacecraft or other creative mobile objects along a path.

Scrolling text using <animateMotion>

You can use the <animateMotion> element to create scrolling text. Look
at an example I used in the SVGSpider.com Web site. If you look at
Page03.svg on the site, you might recognize where this example was used.

The following code displays three separate text animations, each using
<animateMotion> elements and each animated independently. Two of the
pieces of text are animated from right to left, and the third is animated
from left to right:

Listing 8.25 (MultiScrollingText.svg)

<?xml version='1.0'?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN"

"http://www.w3.org/TR/2001/PR-SVG-20010719/

DTD/svg10.dtd">

<svg width="800" height="600" >

<rect x="0" y="0" width="800" height="100"

style="fill:#ccccff;"/>

<svg x="250" width="300" height="100"

zoomAndPan="disable">

<rect x="0" y="0" width="300" height="100"

style="fill:white;"/>

<text style="font-family:serif; stroke:red; fill:red;

font-size:16;">

Aren't Scalable Vector Graphics wonderful?

<animateMotion path="M 400 90 L -300 90"

begin="0s" dur="12s" repeatCount="indefinite" />

</text>

<text style="font-family:serif; stroke:green;

fill:green; font-size:36;

font-weight:bold;">

244

11666-08 08.21.01 2:21 PM Page 244

The <animateMotion> Element

SVG

<animateMotion begin="4s" path="M -300 70 L 400 70"

dur="12s" repeatCount="indefinite"/>

</text>

<a xlink:href="http://www.svgenius.com/" target="new">

<text y="-5" style="font-family:sans-serif;

stroke:orange; fill:orange; font-size:20;">

Experimental SVG at SVGenius.com

<animateMotion begin="2s" path="M 400 30 L -300 30"

dur="12s" repeatCount="indefinite"/>

</text>

<rect height="300" width="50" x="0" y="0"

style="opacity:0.3; fill:white;

color:white;"/>

<rect height="300" width="50" x="250" y="0"

style="opacity:0.3; fill:white;

color:white;"/>

<rect x="0" y="0" width="300" height="100"

style="stroke:#000066;

stroke-width:2; fill:none;"/>

</svg>

<rect width="800" height="2" x="0" y="98"

style="stroke:#003399;fill:#003399"/>

</svg>

This code produces an animation onscreen, which is captured as shown in
Figure 08.15.

245

Figure 08.15

Two of the three lines
of scrolling text are
visible onscreen.

If you are wondering what the following lines in the code do, they add a
slight masking effect to the early and late parts of the visual animation:

<rect height="300" width="50" x="0" y="0"

style="opacity:0.3; fill:white;

color:white;"/>

11666-08 08.21.01 2:21 PM Page 245

Designing SVG Web Graphics

<rect height="300" width="50" x="250" y="0"

style="opacity:0.3; fill:white;

color:white;"/>

You can use colors other than white and vary the opacity to achieve a
desirable effect:

<rect height="300" width="50" x="0" y="0"

style="opacity:0.4; fill:#9999FF;

color:white;"/>

<rect height="300" width="50" x="250" y="0"

style="opacity:0.4; fill:#9999FF;

color:white;"/>

Make sure to change the fill color of the background <rect> element to
match. In these examples, I used a plain fill for these masking rectangles,
but you could use a <linearGradient> element to create a graduated
mask. Of course, you could use shapes other than a <rect> element.

The <animateColor> Element
The <animateColor> element allows you to change the color of an SVG
element or element group over time.

Now create a simple color animation of the color of some text. The following
code animates the fill of the text Chameleon SVG from red to black (see
Figure 08.16). The animation starts two seconds after the image loads, takes
six seconds for the color transition, and is frozen with the new color proper-
ties (both the fill and the stroke are black when the animation finishes).

Listing 8.26 (ChamText01.svg)

<?xml version="1.0" standalone="no"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN"

"http://www.w3.org/TR/2001/PR-SVG-20010719/

DTD/svg10.dtd">

<svg>

<text x="50" y="80" style="fill:red; stroke:black;

font-family:Arial, sans-serif; font-size:72;">

246

11666-08 08.21.01 2:21 PM Page 246

The <animateTransform> Element

Chameleon SVG

<animateColor attributeName="fill" attributeType="CSS"

from="rgb(255,0,0)" to="rgb(0,0,0)"

begin="2s" dur="6s" fill="freeze" />

</text>

</svg>

247

Figure 08.16

The color animation
of the fill of the text
is completed.

The <animateColor> attribute uses the from and to attributes, which you
saw earlier in this chapter. The values of the fill attribute of the <text>
element that is being animated can be expressed as rgb(255,0,0) or as
#FF0000 or as a named color—red. Notice too the addition of the
attributeType attribute in the <animateColor> element, which speci-
fies that the property to be animated is a CSS property.

The <animateTransform>
Element
In this section, I introduce you to the <animateTransform> element. SVG
transformations are some of the most complex parts of SVG; in the space
available in this chapter, I introduce you to some of the more commonly
used animations.

When I first started using animated transformations, I sometimes had diffi-
culty holding all the detail in my head, which would allow me to adequately
visualize what any tweaking I did to my code would do. With practice, that
feeling of lack of control fairly quickly disappears. Don’t be surprised if, for
one or two of these transformations, you don’t pick it up immediately.

11666-08 08.21.01 2:21 PM Page 247

Designing SVG Web Graphics

Rotation Using
<animateTransform>
Take a look at a simple rotation, using a grouping <g> element you used in
an example in Chapter 3, “Creating Static Graphics Elements.” The rota-
tion turns the rectangle through 360 degrees in a 9-second period, using
its upper-left corner as the pivot point. The code for the transformation is
shown here:

<animateTransform begin="1s" dur="10s" type="rotate"

from="0 150 150" to="360 150 150"

attributeName="transform"/>

You should be familiar with the meaning of the begin and dur attributes.
You must specify the attributeName property (in this case, transform)
and the type attribute (in this case, rotate). Notice that the from attrib-
ute contains three values, separated by spaces: 0 150 150. The first num-
ber is the starting position in degrees, meaning that it has its normal
upright position. The second number is the x coordinate of the pivot point
for the rotation, and the third number is the y coordinate of the pivot point.

The to attribute, similarly, contains three figures. The first is the number, in
degrees, for the position of the rectangle at the end of the animation. Of
course, 360 degrees looks the same as 0 degrees; during the period of the
animation, however, the rectangle is rotated smoothly through 360 degrees
(from 0 degrees to 360 degrees) over a period of nine seconds. As with the
from attribute, the second and third numbers of the to attribute describe,
respectively, the x and y coordinates of the pivot point (se Figure 08.17).

If you take time to run the code, you see that the rotation is smooth and
doesn’t change in speed throughout the animation, similar to the second
hand on a watch. Here is the full code:

Listing 8.27 (Rotation01.svg)

<?xml version="1.0" standalone="no"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN"

"http://www.w3.org/TR/2001/PR-SVG-20010719/

DTD/svg10.dtd">

248

11666-08 08.21.01 2:21 PM Page 248

Rotation Using <animateTransform>

<svg xmlns:xlink="http://www.w3.org/1999/xlink">

<g>

<animateTransform begin="1s" dur="10s" type="rotate"

from="0 150 150" to="360 150 150"

attributeName="transform"/>

<rect x="150" y="150" width="300" height="68"

style="fill:#DDDDFF; stroke:none">

</rect>

<line x1="150" x2="450" y1="152" y2="152"

xlink:href="#MyLine"/>

<line x1="150" x2="450" y1="154" y2="154"

xlink:href="#MyLine" style="fill:red;"/>

<line x1="150" x2="450" y1="156" y2="156"

xlink:href="#MyLine"/>

</g>

</svg>

249

Figure 08.17

A rotate animation
of a rectangle, early
in the animation.

Now you move on to create a slightly more complex rotation transforma-
tion. Although I walk you through the code and describe in detail what is
happening, if you are going to be able to figure all this out, you need to
run the code.

You use a similar rectangle, but animate it in a more complex way. The
most important part of the code is the <animateTransform> element, so
first look at it in isolation:

11666-08 08.21.01 2:21 PM Page 249

Designing SVG Web Graphics

<animateTransform begin="0s" dur="12s"

attributeName="transform" type="rotate"

values="0 150 150; -180 150 150; 180 150 150;

360 150 150"

additive="sum" accumulate="none" calcMode="linear"

fill="remove" />

The begin and dur attributes should be familiar to you by now. The ani-
mation lasts 12 seconds. As shown in the preceding rotation, you have an
attributeName attribute with a value of transform and a type attrib-
ute with a value of rotate. The values attribute at first sight looks com-
plex, so let me break it down to make it easier to understand. The first
three figures are the same as shown in the preceding example and
describe the starting point of the animation—a rectangle that is right side
up. The second group of three numbers represents the position of the rec-
tangle at the end of four seconds (one-third of the way through the anima-
tion). At four seconds, the rectangle is rotated, anticlockwise, by 180
degrees, which is what the -180 means. The rotation is around the x and
y coordinates of 150 and 150, respectively.

The next four seconds are defined by 180 150 150, which means that the
rectangle at the end of eight seconds is again upside down (as it was after
four seconds), but has traveled from -180 degrees to +180 degrees in
those four seconds. In other words, in those four seconds, the rectangle
rotates 360 degrees clockwise. At four seconds, you see the rectangle
switch from an anticlockwise rotation to a clockwise rotation. In addition,
you might notice that from four to eight seconds, the rotation is twice as
fast as before.

The final set of figures, 0 150 150, tells you that at 12 seconds the rectan-
gle is back where it started—upright. During the final 4 seconds, it rotates
from 180 degrees to 0 degrees (clockwise), which is slower than the 360
degrees clockwise in the preceding 4 seconds. Just as the rectangle swings
past the horizontal at 8 seconds, you should be able to see a distinct slow-
ing in pace.

Maybe you are wondering how I could be sure that the contents in the
values attribute refer to the positions at 0, 4, 8, and 12 seconds. I knew
that because the calcMode attribute had a value of linear, which means
that equal steps exist between the values in the values attribute.

250

11666-08 08.21.01 2:21 PM Page 250

Rotation Using <animateTransform>

If you add an extra set of three values to the values attribute, you see the
positions at 0, 3, 6, 9, and 12 seconds.

Here is the full code:

Listing 8.28 (Rotation02.svg)

<?xml version="1.0" standalone="no"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN"

"http://www.w3.org/TR/2001/PR-SVG-20010719/

DTD/svg10.dtd">

<svg xmlns:xlink="http://www.w3.org/1999/xlink">

<defs>

<line id="MyLine" x1="150" x2="450" y1="150" y2="150"

style="fill:#000099;

stroke:#000099; stroke-width:0.05;"/>

</defs>

<g>

<animateTransform dur="12s" attributeName="transform"

type="rotate"

values="0 150 150; -180 150 150; 180 150 150; 360

150 150"

additive="sum" accumulate="none" calcMode="linear"

fill="remove" />

<rect x="150" y="150" width="300" height="68"

style="fill:#DDDDFF;

stroke:none"/>

<line x1="150" x2="450" y1="152" y2="152"

xlink:href="#MyLine"/>

<line x1="150" x2="450" y1="154" y2="154"

xlink:href="#MyLine"

style="fill:red;"/>

<line x1="150" x2="450" y1="156" y2="156"

xlink:href="#MyLine"/>

<use transform="translate(0,8)" xlink:href="#MyLine"/>

<use transform="translate(0,12)" xlink:href="#MyLine"

style="fill:red"/>

</g>

</svg>

If you want to create an endlessly repeating animation, you can modify the
<animateTransform> element to look like this:

<animateTransform dur="12s" attributeName="transform"

type="rotate"

values="0 150 150; -180 150 150; 180 150 150; 360

150 150"

251

11666-08 08.21.01 2:21 PM Page 251

Designing SVG Web Graphics

additive="sum" accumulate="none" calcMode="linear"

fill="remove" restart="always"

repeatCount="indefinite" />

<rect x="150" y="150" width="300" height="68"

style="fill:#DDDDFF;

stroke:none"/>

Note the addition of the restart and repeatCount attributes to the
<animateTransform> element.

Simple Sample Animations
In this section, I show you a few examples of the ways in which you can
apply SVG animations.

Animating gradients

Take a look again at the linear gradient you saw early in Chapter 6,
“Creating SVG Gradients,” and look at how you can animate it:

Listing 8.29 (AnimBasicLinGradient01.svg)

<?xml version="1.0" standalone="no"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN"

"http://www.w3.org/TR/2001/PR-SVG-20010719/

DTD/svg10.dtd">

<svg width="500" height="300">

<defs>

<linearGradient id="MyFirstGradient">

<stop offset="5%" style="stop-color:#FF6600"/>

<stop offset="95%" style="stop-color:#FFFFCC"/>

</linearGradient>

</defs>

<rect style="fill:none; stroke:red"

x="1" y="1" width="498" height="298"/>

<rect x="50" y="50" width="300" height="100"

style="fill:url(#MyFirstGradient); stroke:none"/>

</svg>

252

11666-08 08.21.01 2:21 PM Page 252

Simple Sample Animations

First, animate the pale yellow color that forms the right end of the gradient.
To do that, you split the <stop> element into start and end tags and insert
an <animate> element. You will choose to animate the color from pale yel-
low to deep blue, starting at three seconds, taking five seconds for the ani-
mation and allowing the animation to drop back to the original pale yellow
color. You don’t need to alter anything in the <rect> element because you
are changing only the characteristics of the referenced fill:

<linearGradient id="MyFirstGradient">

<stop offset="5%" style="stop-color:#FF6600"/>

<stop offset="95%" style="stop-color:#FFFFCC">

<animate attributeName="stop-color" begin="3s"

dur="5s" from="#FFFFCC"

to="#000066"/>

</stop>

</linearGradient>

If you want to animate both ends of the gradient, you similarly add another
<animate> element nested within the other <stop> element of the
<linearGradient> element. In the following code, you alter the color
from a reddish color to pale blue over the same period as the right end of
the gradient is being animated (as shown in Figure 08.18).

Listing 8.30 (AnimBasicLinGradient02.svg)

<?xml version="1.0" standalone="no"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN"

"http://www.w3.org/TR/2001/PR-SVG-20010719/

DTD/svg10.dtd">

<svg width="500" height="300">

<defs>

<linearGradient id="MyFirstGradient">

<stop offset="5%" style="stop-color:#FF6600">

<animate attributeName="stop-color" begin="3s"

dur="5s" from="#FF6600" to="#CCCCFF"/>

</stop>

<stop offset="95%" style="stop-color:#FFFFCC">

<animate attributeName="stop-color" begin="3s"

dur="5s" from="#FFFFCC" to="#000066"/>

</stop>

</linearGradient>

</defs>

253

11666-08 08.21.01 2:21 PM Page 253

Designing SVG Web Graphics

<rect style="fill:none; stroke:red"

x="1" y="1" width="498" height="298"/>

<rect x="50" y="50" width="300" height="100"

style="fill:url(#MyFirstGradient); stroke:none"/>

</svg>

254

Figure 08.18

The animation of
both stop colors of
the linear gradient

toward the end of the
animation.

To see the effect of the animation, you need to run the code. By adjusting
the relative timing of the two animations, you can create some interesting
wave effects.

Animating across a gradient

In the preceding section, I showed you how to animate the gradient within
a static SVG shape. You can also produce interesting color effects on an
SVG shape if you animate it within a linear gradient. Run the following
code, and watch how the color of the rectangle changes from deep pink to
pale blue (as in Figure 08.19).

11666-08 08.21.01 2:21 PM Page 254

Simple Sample Animations

Listing 8.31 (AnimatedGradientRect01.svg)

<?xml version="1.0" standalone="no"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN"

"http://www.w3.org/TR/2001/PR-SVG-20010719/

DTD/svg10.dtd">

<svg width="800" height="600">

<defs>

<linearGradient id="MyBlueGradient"

gradientUnits="userSpaceOnUse"

x1="0" y1="50" x2="800" y2="50" >

<stop offset="10%" style="stop-color:#FF0066"/>

<stop offset="75%" style="stop-color:#EEEEFF"/>

</linearGradient>

</defs>

<rect x="0" y="200" width="100" height="100"

style="fill:url(#MyBlueGradient)">

<animate attributeName="x" begin="0s" dur="10s"

from="0" to="700" repeatCount="indefinite"/>

</rect>

</svg>

255

Figure 08.19

A rectangle partway
through its animation
across a gradient.

Against a white background, animating across a gradient can be an inter-
esting effect, depending how you configure the gradient. Suppose that you
modify the second stop color so that it is the same as the background
color; you can obtain an interesting, dissolving animation using code like
the following:

11666-08 08.21.01 2:21 PM Page 255

Designing SVG Web Graphics

Listing 8.32 (AnimatedGradientRect02.svg)

<?xml version="1.0" standalone="no"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN"

"http://www.w3.org/TR/2001/PR-SVG-20010719/

DTD/svg10.dtd">

<svg width="800" height="600">

<defs>

<linearGradient id="MyBlueGradient"

gradientUnits="userSpaceOnUse"

x1="0" y1="50" x2="800" y2="50" >

<stop offset="10%" style="stop-color:#FF0066"/>

<stop offset="75%" style="stop-color:#EEEEFF"/>

</linearGradient>

</defs>

<rect x="0" y="0" width="100%" height="100%"

style="fill:#EEEEFF; stroke:#EEEEFF"/>

<rect x="0" y="200" width="100" height="100"

style="fill:url(#MyBlueGradient)">

<animate attributeName="x" begin="0s" dur="10s"

from="0" to="700" repeatCount="indefinite"/>

</rect>

</svg>

The important difference from the preceding code is that a background
color in a <rect> element fills the whole space so that as the square ani-
mates, it seems to disappear into a veil of mist. Of course, by adjusting the
offset attribute values of the <stop> elements or the values of the stop-
color attributes, you can obtain more striking or more subtle effects to suit
your needs.

Animating text

If you recall, in Chapter 4, “Using Text in SVG,” you created a static box
of text that I indicated would be used to display a scrolling text window.
Now go on to create the scrolling text window by adding an appropriate
animation visual component:

Listing 8.33 (TextWindowAnimation.svg)

<?xml version="1.0" standalone="no"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN"

256

11666-08 08.21.01 2:21 PM Page 256

Simple Sample Animations

"http://www.w3.org/TR/2001/PR-SVG-20010719/

DTD/svg10.dtd">

<svg width="200" height="200">

<svg x="0" y="0" width="200" height="200">

<rect x="0" y="0" width="200" height="200"

style="stroke:#990066; fill:none;"/>

<text>

<tspan x="5" y="25" style="font-size:14;

font-family:Arial, sans-serif; stroke:#990066; fill:#990066">

<animate attributeName="y" begin="2s" dur="20s"

from="225" to="-120" repeatCount="indefinite"/>

Scalable Vector Graphics

</tspan>

<tspan x="5" dy="2em" style="font-size:10;

font-family:Arial, sans-serif;">

The World Wide Web Consortium has

</tspan>

<tspan x="5" dy="1em" style="font-size:10;

font-family:Arial, sans-serif;">

announced the availability of its

</tspan>

<tspan x="5" dy="1em" style="font-size:10;

font-family:Arial, sans-serif;">

exciting new XML-based graphics

</tspan>

<tspan x="5" dy="1em" style="font-size:10;

font-family:Arial, sans-serif;">

format, SVG, for the display

</tspan>

<tspan x="5" dy="1em" style="font-size:10;

font-family:Arial, sans-serif;">

of 2D graphics, text and bitmap

</tspan>

<tspan x="5" dy="1em" style="font-size:10;

font-family:Arial, sans-serif;">

graphics.

</tspan>

<tspan x="5" dy="2em" style="font-size:10;

font-family:Arial, sans-serif;">

Further information is available

</tspan>

<tspan x="5" dy="1em" style="font-size:10;

font-family:Arial, sans-serif;">

at the W3C web site,

</tspan>

<tspan x="5" dy="2em" style="font-size:10;

font-family:Arial, sans-serif; fill:blue; stroke:blue">

257

11666-08 08.21.01 2:21 PM Page 257

Designing SVG Web Graphics

http://www.w3.org/

</tspan>

</text>

</svg>

</svg>

Notice that only one <animate> element is in the code, although it has
many lines of text. When the first <tspan> element is animated under con-
trol of the <animate> element, the subsequent <tspan> elements are
repositioned because their vertical position is defined by the dy attribute.
When the first <tspan> moves up, the following <tspan> elements also
move up to keep the vertical separation at the correct distance. Figure
08.20 illustrates this.

258

Figure 08.20

Scrolling text in the
text window.

You have colored the text referring to http://www.w3.org blue, implying
that you can link from the scrolling text. To add that functionality, simply
nest the final <tspan> element within an <a> element with an appropriate
value for the xlink:href attribute:

<a xlink:href="http://www.w3.org">

<tspan x="5" dy="2em" style="font-size:10;

font-family:Arial, sans-serif;

fill:blue; stroke:blue">

http://www.w3.org/

</tspan>

11666-08 08.21.01 2:21 PM Page 258

Simple Sample Animations

Similarly, if you want to link the heading Scalable Vector Graphics directly
to the SVG page at W3C and open that linked page in a new window,
you can add this section earlier in the code:

<a xlink:href="http://www.w3.org/Graphics/

SVG/Overview.htm8" target="new">

<tspan x="5" y="25" style="font-size:14;

font-family:Arial, sans-serif;

stroke:#990066; fill:#990066">

<animate attributeName="y" begin="2s" dur="20s"

from="225" to="-120"

repeatCount="indefinite"/>

Scalable Vector Graphics

</tspan>

Animating horizontal scrolling text

Scrolling text horizontally is also a fairly straightforward process, so you
can produce ticker-tape-like effects.

The following code could form the top “frame” on a Web page, with the
window on the ticker tape the size of a standard banner ad. A ticker tape
like this one could be used for banner ads, news updates, and weather
information, for example.

Listing 8.34 (TickerTape01.svg)

<?xml version="1.0" standalone="no"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN"

"http://www.w3.org/TR/2001/PR-SVG-20010719/

DTD/svg10.dtd">

<svg width="800" height="100">

<rect x="0" y="0" width="800" height="100"

style="fill:#CCFFCC;"/>

<svg x="166" y="20" width="468" height="60">

<rect x="0" y="0" width="100%" height="100%"

style="fill:white; stroke:none;"/>

<a xlink:href="mailto://Consulting@xmml.com">

<text x="700" y="40" style="stroke:green; fill:green;

font-family:Courier, monospace; font-size:20;

font-weight:normal;">

259

11666-08 08.21.01 2:21 PM Page 259

Designing SVG Web Graphics

XMML.com now provides consulting services on XML,

SVG, XSL-FO, XLink and XForms. Click here to email us.

<animate attributeName="x" from="600" to="-1000"

begin="0s" dur="20s"

repeatCount="indefinite"/>

</text>

<rect x="0" y="0" width="468" height="60"

style="stroke:#009900;

stroke-width:2; fill:none;"/>

</svg>

</svg>

When you are creating a ticker tape, you can easily overlook the need to
scroll the text right out of its window. Notice that I have not taken the ani-
mation quite far enough to the left (see Figure 08.21). To provide a tidy
end to the animation, you need to change the to attribute to have a value
of -1250.

If the example is used as a banner ad, you want users to be able to link to
another Web site or to send an email message for information—hence, the
presence of the <a> element around the <text> element.

260

Figure 08.21

Scrolling text in
a ticker tape

animation.

Altering text color

In Chapter 5, “Creating Navigation Bars,” I showed you step-wise changes
of color on mouseover and mouseout. However, SVG can also produce
much more gradual color changes. For example, in Listing 8.35 you can
examine a color change sequence that uses the values and keyTimes
attributes on the <animateColor> element to animate color values of text
over time:

11666-08 08.21.01 2:21 PM Page 260

Simple Sample Animations

Listing 8.35 (ColorAnimation01.svg)

<?xml version="1.0" standalone="no"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN"

"http://www.w3.org/TR/2001/PR-SVG-20010719/

DTD/svg10.dtd">

<svg width="300" height="100">

<rect x="0" y="0" width="100%" height="100%"

style="fill:#EEEEEE" />

<text x="20" y="40" style="fill:red; stroke:none;

font-family:Arial, sans-serif; font-size:36;">

<animateColor attributeName="fill" begin="0s"

values="red; white; blue; red" keyTimes="2s; 7s;

10s; 15s" dur="15s" repeatCount="indefinite"/>

SVGenius.com

</text>

</svg>

Figure 08.22 shows the animated color moving from white to blue (see the
values attribute in the code).

261

Figure 08.22

Part of a multistage
color animation of
text fill color.

Altering text opacity

Sometimes, you might want some text to fade gently into view or fade qui-
etly into the sunset. By now, you probably have worked out how to create
this effect, but let me give you a couple of examples.

The first example simply makes a simple piece of text visible over a period
of ten seconds.

11666-08 08.21.01 2:21 PM Page 261

Designing SVG Web Graphics

Listing 8.36 (AnimOpacityInText00.svg)

<?xml version="1.0" standalone="no"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN"

"http://www.w3.org/TR/2001/PR-SVG-20010719/

DTD/svg10.dtd">

<svg width="400" height="80">

<text x="20" y="50" style="font-family:Ventana,

Arial, sans-serif; font-size:20; stroke:red; fill:red">

<animate begin="0s" dur="10s" attributeName="opacity"

attributeType="CSS" from="0" to="1" fill="freeze"/>

SVG is truly dynamic and subtle!

</text>

</svg>

You might want a faster animation, and you might want it to repeat. You
could, as shown in the following example, alter the dur attribute to four
seconds and add a repeatCount attribute with value of 5. If you want it
to repeat indefinitely, you could change the value of the repeatCount
attribute to indefinite.

Listing 8.37 (AnimOpacityinText01.svg)

<?xml version="1.0" standalone="no"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN"

"http://www.w3.org/TR/2001/PR-SVG-20010719/

DTD/svg10.dtd">

<svg width="400" height="80">

<text x="20" y="50" style="font-family:Ventana,

Arial, sans-serif; font-size:20; stroke:red; fill:red">

<animate begin="0s" dur="4s" attributeName="opacity"

attributeType="CSS" from="0" to="1"

fill="freeze" repeatCount="5"/>

SVG is truly dynamic and subtle!

</text>

</svg>

Another option is to create a chain of animations where an animation that
makes text opaque when it finishes triggers a fade animation, which in turn
triggers the first animation. In the following example, the duration of the
animations gives a fairly subtle effect. By changing the duration of each
animation to a shorter period, you can create a more dynamic (or intrusive)
transition. The choice is yours. SVG gives you precise control so that you
can change the animation to exactly the effect you want.

262

11666-08 08.21.01 2:21 PM Page 262

Simple Sample Animations

Listing 8.38 (AnimOpacityInText00.svg)

<?xml version="1.0" standalone="no"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN"

"http://www.w3.org/TR/2001/PR-SVG-20010719/

DTD/svg10.dtd">

<svg width="400" height="80">

<text x="20" y="50" style="font-family:Ventana, Arial,

sans-serif; font-size:20; stroke:red; fill:red">

<animate id="MakeVisible" begin="0s; MakeTransparent.end"

dur="4s" attributeName="opacity" attributeType="CSS"

from="0" to="1" fill="freeze" />

<animate id="MakeTransparent" begin="MakeVisible.end"

dur="8s" attributeName="opacity" attributeType="CSS"

from="1"

to="0" fill="freeze" />

SVG is truly dynamic and subtle!

</text>

</svg>

Animating opacity in a gradient

Now revisit one of the gradient examples and apply animations of the
stop-opacity properties of the gradient. After the animation is applied,
the code looks like this:

Listing 8.39 (AnimGradientOpacity01.svg)

<?xml version='1.0'?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN"

"http://www.w3.org/TR/2001/PR-SVG-20010719/

DTD/svg10.dtd">

<svg width="800" height="600">

<defs>

<linearGradient id="MyBlueGradient"

gradientUnits="userSpaceOnUse" x1="0"

y1="0" x2="0" y2="100" >

<stop offset="10%" style="stop-color:#000066">

<animate begin="2s" attributeName="stop-opacity"

from="1" to="0" dur="3s" fill="freeze"/>

</stop>

<stop offset="75%" style="stop-color:#AAAADD">

<animate begin="5s" attributeName="stop-opacity"

from="1" to="0" dur="8s" fill="freeze"/>

263

11666-08 08.21.01 2:21 PM Page 263

Designing SVG Web Graphics

</stop>

</linearGradient>

</defs>

<text x="50" y="70" style="font-family:Times, serif;

font-size:72;

fill:url(#MyBlueGradient);">

Hello SVG!

</text>

</svg>

As with many of the other animations in this chapter, the best way to
appreciate what is going on is to run the code.

I have animated the stop-opacity property of both <stop> elements
contained within the <linearGradient> element. Notice that I have set
the duration of the first <animate> element to be three seconds, whereas
the start time of the second animation is five seconds and its duration is
eight seconds. These settings allow what is essentially a two-step fade of
the text. During the first three seconds, the top part of the text fades notice-
ably. It doesn’t fade completely because color is still being contributed to
the top part of the text by the color defined in the second <stop> element.
However, from five seconds onward, the opacity of the remaining color in
the text fades slowly over an 8-second period.

You might not choose to use such slow fades. My main aim in this example
is to show you that you can independently control the fade of different
parts of a gradient. Of course, this same technique can be applied to other
SVG elements, not just to text, and can also be applied to gradients that
have multiple stop elements, not just two. The potential for subtle, controlled
fades in SVG animations is enormous.

Listing 8.40 demonstrates an animation of a filter that uses the
<feTurbulence> filter primitive.

Listing 8.40 (AnimTurbulence01.svg)

<?xml version="1.0" standalone="no"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN"

"http://www.w3.org/TR/2001/PR-SVG-20010719/

DTD/svg10.dtd">

<svg width="400" height="500">

<defs>

264

11666-08 08.21.01 2:21 PM Page 264

Simple Sample Animations

<filter id="Turbulence1" in="SourceImage"

filterUnits="objectBoundingBox">

<feTurbulence in="SourceAlpha" type="turbulence"

baseFrequency="0.01"

numOctaves="1" seed="0" >

<animate attributeName="baseFrequency"

values="0.01; 0.008; 0.01; 0.012; 0.01"

keyTimes="0s; 5s; 10s; 15s; 20s;"

begin ="0s" dur="20s" repeatCount="indefinite"/>

</feTurbulence>

</filter>

</defs>

<rect x="0" y="0" width="400" height="500"

style="filter:url(#Turbulence1)"/>

</svg>

Figure 08.23 shows the visual appearance when baseFrequency has
been animated to a value of approximately 0.008.

265

Figure 08.23

A turbulence filter
primitive in the
process of
animation.

Listing 8.41 shows an animation of a complex of filter primitives that I
adapted from an animation on the Adobe.com Web site. The visual
appearance is approximately that of a floodlight scanning across some let-
tering over time.

11666-08 08.21.01 2:21 PM Page 265

Designing SVG Web Graphics

Listing 8.41 (Spotlight.svg)

<?xml version="1.0" standalone="no"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN"

"http://www.w3.org/TR/2001/PR-SVG-20010719/

DTD/svg10.dtd">

<svg>

<defs>

<filter id="MySpot" x="-20%" y="-60%" width="150%"

height="300%" >

<feDiffuseLighting in="SourceGraphic"

lighting-color="red" result="lamp"

diffuseConstant=".8" surfaceScale="10"

resultScale=".2">

<feSpotLight

x="200" y="150" z="15"

pointsAtX="0" pointsAtY="100" pointsAtZ="0"

specularExponent="10">

<animate attributeName="pointsAtX"

values="0;100;400;100;0" begin="0s"

dur="8s" repeatCount="indefinite"/>

</feSpotLight>

<animateColor attributeName="lighting-color"

values="yellow;white;red;white;yellow;"

begin="0s" dur="8s" repeatCount="indefinite"/>

</feDiffuseLighting>

<feComposite in="lamp" result="lamp"

operator="arithmetic" k2="1" k3="1"/>

</filter>

</defs>

<text id="Spotlight" pointer-events="none"

style="fill:white; stroke-width:4;

stroke:white; font-size:80;

filter:url(#MySpot);" x="10" y="85">XMML.com</text>

</svg>

Figure 08.24 shows the “spotlight” partway through a scan of the lettering.

I hope that in this chapter I have succeeded in conveying to you a little
of the exciting potential of SVG animations. I consciously have largely
avoided using at this stage any animations that are interactive in nature
(those are described in Chapter 11).

266

11666-08 08.21.01 2:21 PM Page 266

Simple Sample Animations

If you have caught a glimpse of the enormous potential of SVG for produc-
ing subtle animations that go far beyond anything that is possible with
bitmap graphics, please take time to experiment. The huge advantage of
SVG is that you can examine how experts have produced animations that
you find visually attractive or exciting. This is one of the reasons that I
believe SVG will take off in a big way. I expect an explosion of interest
and skills, just as there was with HTML, back in the early to mid-1990s.
Of course, much more can be said about SVG animations, but that
discussion needs to await another book dedicated to the topic.

267

Figure 08.24

A complex animated
SVG filter that looks
like a spotlight play-
ing across giant
lettering.

11666-08 08.21.01 2:21 PM Page 267

